7,317 research outputs found

    Systematic Policy Decisions on Direct Income Payments in Agricultural Policies

    Get PDF
    Direct income payments (DIP) are in the centre of the discussion in the ongoing political debate whether agricultural policy objectives can be pursued in an economically more efficient and less distorting way. This paper discusses under which circumstances DIP are an appropriate and efficient measure to address the objectives of agricultural policies. It identifies and examines the characteristics that DIP should have in the context of different objectives. If governments want to meet their policy objectives by the use of DIP efficiently, a precise definition of the objective is crucial. An optimal policy design achieves a specific objective while keeping the impact on economic distortions low and ensuring efficiency in the allocation of resources. The decision tree for DIP presented in this paper contributes to a more systematic approach to the topic and facilitates the policy design for a sustainable and resource saving economic policy in the field of agriculture. We show that DIP can be used to address different types of policy objectives, but have to be adapted carefully depending on the specific targets. If used as a measure to compensate income losses due to policy changes, DIP could help farmers to adjust to policy changes in an efficient way and, at the same time, release budget funds. Such gains could then be used in and tied to areas that are known to be crucial but currently lack resources due to budget restrictions e.g. the provision of environmental goods and services, which can also be addressed by DIP.Direct income payments, agricultural policy, policy objectives, decision tree, Agricultural and Food Policy, Q18, E6, H5,

    U(1) Axial Symmetry and Correlation Functions in the High Temperature Phase of QCD

    Full text link
    Simple group-theoretical arguments are used to demonstrated that in the high temperature (chirally restored) phase of QCD with N massless flavours, all n-point correlation functions of quark bilinears are invariant under U(1) axial transformations provided n < N. In particular this implies that the two-point correlation function in the eta' channel is identical to that in the pion channel for N > 2. Unlike previous work, this result does not depend on the topological properties of QCD and can be formulated without explicit reference to functional integrals.Comment: 3 pages, RevTe

    Downbeat nystagmus: aetiology and comorbidity in 117 patients

    Get PDF
    Objectives: Downbeat nystagmus (DBN) is the most common form of acquired involuntary ocular oscillation overriding fixation. According to previous studies, the cause of DBN is unsolved in up to 44% of cases. We reviewed 117 patients to establish whether analysis of a large collective and improved diagnostic means would reduce the number of cases with ``idiopathic DBN'' and thus change the aetiological spectrum.Methods: The medical records of all patients diagnosed with DBN in our Neurological Dizziness Unit between 1992 and 2006 were reviewed. In the final analysis, only those with documented cranial MRI were included. Their workup comprised a detailed history, standardised neurological, neuro-otological and neuro-ophthalmological examination, and further laboratory tests.Results: In 62% (n = 72) of patients the aetiology was identified (``secondary DBN''), the most frequent causes being cerebellar degeneration (n = 23) and cerebellar ischaemia (n = 10). In 38% (n = 45), no cause was found (``idiopathic DBN''). A major finding was the high comorbidity of both idiopathic and secondary DBN with bilateral vestibulopathy (36%) and the association with polyneuropathy and cerebellar ataxia even without cerebellar pathology on MRI.Conclusions: Idiopathic DBN remains common despite improved diagnostic techniques. Our findings allow the classification of ``idiopathic DBN'' into three subgroups: ``pure'' DBN (n = 17); ``cerebellar'' DBN (ie, DBN plus further cerebellar signs in the absence of cerebellar pathology on MRI; n = 6); and a ``syndromatic'' form of DBN associated with at least two of the following: bilateral vestibulopathy, cerebellar signs and peripheral neuropathy (n = 16). The latter may be caused by multisystem neurodegeneration

    Synaptic integration of transplanted fetal neurons into different neocortical environments

    Get PDF
    Brain repair strategies are becoming more promising as the approach of neuron transplantation has been tested in clinical settings, e.g., as therapy for Parkinson disease (PD). One important feature that transplanted neurons need to fulfill is their precise synaptic integration into the existing host brain network to truly reconstruct neuronal circuits. Brain-wide connectivity as well as functionality of grafted neurons was shown to be highly adequate. Transplanted neurons were proven to become functional and integrate with high specificity into the host cortical circuitry in a condition of upper layer neuron ablation. However, there is still little knowledge about brain-wide input connectivity of grafted neurons particularly concerning conditions of severe brain injury that goes along with reactive gliosis (brain trauma) or neurodegenerative diseases and aging with slow progression of synapse loss. Therefore, in the course of this PhD project I examined host-graft connectivity using monosynaptic rabies virus (RABV) tracing in cortical stab wound (SW) injury, intact, and inflamed cortical conditions in adult mice to evaluate if and to which extent these conditions integrate transplanted fetal neurons. In addition, I investigated graft integration in brain environments of progressive amyloidosis going along with synapse loss as observed in Alzheimer’s disease (AD) and of healthy aging to explore any influence of the aging brain environment per se. Indeed, in all these different host environments the grafted fetal neurons survived, differentiated, and integrated by forming connections with the correct host input regions. Surprisingly, brain-wide connectivity analysis showed that the grafts received excessive inputs from local neurons in the SW-injured, amyloid-plaque loaded, and aged environment. On the other hand, there was quantitatively fewer neuron integration in intact young control brains and in brains exposed to Lipopolysaccharide (LPS) induced inflammation as opposed to the massive input connections observed in the other conditions. Thus, new neurons integrate independent of prior neuron loss or mild reactive gliosis as grafted cells formed connections even in conditions where neuron loss did not occur. State-of-the-art proteome analysis using mass spectrometry (MS) revealed the protein compositions of these host cortical environments promoting excessive synaptic integration. This data provides important and highly relevant insights for the design of cell-based therapies for brain trauma and neurodegenerative diseases that go along with synapse loss. Understanding the mechanism that promote synaptic integration will open new avenues to modulate certain parameters in order to achieve adequate functional repair of lost neurons and synaptic connections

    Isolation of Nuclei from Physarum flavicomum: Demonstration of Nuclear Cyclic Acid AMP Phosphodiesterase

    Get PDF
    Cyclic AMP phosphodiesterase activity in the nucleus of the myxomycete Physarum flavicomum was demonstrated by cytochemical staining utilizing electron microscopy and by enzymatic assays with tritiated cyclic AMP as the substrate. Cytochemical staining showed Physarum\u27s plasmodial phosphodiesterase activity to be located in the nucleus, along the plasma membrane, in vesicles, and free in the cytoplasm. Nuclear phosphodiesterase, which may be cell cycle dependent, was primarily located in the nucleolus. Nuclei from three to five day old microplasmodial cultures were isolated by the method of Henney and Yee. Whole cells were collected through centrifugation and washed. Pellets were homogenized in a medium composed of 0.01 MTris-HC1 (pH 7.2 at 4 °C), 0.25 M sucrose, 0.01% Triton X-100, and 5mM CaC1₂. Nuclei were collected through double filtration and two 1.0 M sucrose density gradient centrifugations. After the nuclei were washed, microscopic examination revealed a purity of over 90%. Radioactive assays of the nuclear preparations demonstrated phosphodiesterase activity consistant with that indicated by cytochemical localization. The specific activity of the nuclear enzyme was 15 nMole of cyclic AMP hydrolyzed /min/mg. of protein
    corecore